Jakarta - Dalam ilmu matematika, gradien adalah garis lurus yang memiliki kemiringan berdasarkan persamaan. Artinya, gradien menunjukkan nilai atau tingkat kemiringan pada garis dari bahan ajar persamaan garis lurus kelas VIII yang disusun Netty Nur Indah Ningsih, gradien merupakan bagian dari materi persamaan garis lurus. Persamaan garis dapat ditulis dengan y = mx + c, dengan m merupakan lambang gradien dari persamaan koordinat kartesius, gradien akan menentukan bagaimana garis di koordinat tersebut. Gradien suatu garis bisa miring ke kiri, ke kanan, curam, dan landai. Arah dan kemiringan garis ini bergantung pada nilai komponen Y dan komponen buku Matematika yang diterbitkan Pusat Kurikulum dan Perbukuan Kementerian Pendidikan Nasional, langkah-langkah menentukan nilai gradien suatu garis yaitu• Komponen y bertanda + apabila bergerak ke atas• Komponen y bertanda - apabila bergerak ke bawah• Komponen x bertanda + apabila bergerak ke kanan• Komponen x bertanda - apabila bergerak ke kiriSifat-Sifat Gradien dari Dua Garis LurusKedudukan suatu garis bisa tegak lurus dan sejajar. Kedua garis tersebut dapat membuat nilai gradien berhubungan, seperti dikutip dari Zenius. Sifat dua garis lurus dapat membantu kamu menentukan gradien dari kedua garis sejajarArtinya, garis A dan B saling sejajar sehingga nilai gradien kedua garis tersebut memiliki nilai yang sama dan dapat dinyatakan dengan mA = garis tegak lurusJika terdapat dua garis saling tegak lurus, kedua gradiennya dikalikan dan menghasilkan -1 atau mA x mB = tadi kita sudah mengetahui rumus gradien garis dengan persamaan garis lurus seperti di atas, berikut ini dua macam rumus mencari gradien1. Rumus Gradien dengan Persamaan LinierTerdapat dua macam bentuk persamaan garis linear atau garis lurus. Maka, cara untuk menentukan gradiennya pun berbeda, tergantung persamaan garisnya.• Persamaan garis y = mx + cPersamaan garis ini gradiennya mudah dicari karena merupakan koefisien dari variabel x, yaitu m. Misalnya- Garis y = 2x + 3 maka gradien garisnya adalah 2- Garis y = -3x + 2 maka gradien garisnya adalah -3• Persamaan garis ax + by + c = 0Jika persamaan garisnya ax + by + c = 0, maka langkah pertama adalah mengubah persamaan garis tersebut ke dalam bentuk y = mx + lupa untuk memperhatikan tanda +/- dari koefisien pada setiap variabel karena tanda ini akan berubah ketika pindah ruas Rumus Gradien dengan Dua TitikDiketahui dalam suatu garis terdapat dua titik yang melaluinya, misal x1,y1 dan x2,y2 maka gradiennya bisa dicari dengan rumus m = y/ x = y2 - y1 / x2 - terdapat dua titik pada suatu garis, yaitu titik -4,2 dan 3,5. Berapa gradien pada garis tersebut?Pembahasanx1,y1 = -4,2x2,y2 = 3,5Masukan angka ke dalam rumus m = y/ x = y2 - y1 / x2 - x1m = 5-2 / 3-4 = 3/7Jadi, gradien pada garis tersebut yaitu 3/ tadi rumus gradien dan cara mencari gradien pada garis lurus. Perhitungan gradien ini dapat berguna salah satunya untuk mencari tingkat kemiringan saat pembangunan tangga di rumah atau pembuatan jalan di area pegunungan yang ada tanjakan, turunan, dan belokan. Simak Video "Ini Nono, Siswa SD NTT yang Menang Lomba Matematika Tingkat Dunia" [GambasVideo 20detik] twu/twu
dimanam adalah gradien yang akan dicari dan, 'a' dan 'b' adalah koefisien dari suatu persamaan. Gradien Garis Umum. dimana m adalah kemiringan garis. maksud dari dua buah garis tegak lurus adalah dua buah persamaan yang gradiennya terbalik. Contoh : a = 3 b = 6 m = -a/b = -3/6 = -1/2 dua garis yg tegak lurus : m1 . m2 = -1 , maka m2 = 2Gradien adalah nilai yang menunjukkan kemiringan suatu garis. Simbol gradien biasanya dituliskan dengan huruf m. Cara menentukan gradien terdiri dari empat rumus yang dapat digunakan untuk menentukan nilai gradien dari suatu garis lurus. Empat rumus gradien tersebut digunakan untuk menentukan nilai kemiringan garis yang bisa diberikan dalam bentuk gambar, persamaan garis y = mx + c, persamaan garis Ax + By + C = 0, atau diketahui letak dua titik koordinat. Cara menentukan gradien garis yang diberikan dalam bentuk gambar akan berbeda cara menentukan gradien garis lurus yang diketahui persamaannya. Nilai gradien dapat berupa bilangan real positif atau negatif. Gradien dengan nilai positif menunjukkan garis lurus condong ke kanan. Gradien dengan nilai negatif menunjukkan garis lurus condong ke kiri. Bagaimana cara menentukan gradien dari persamaan Ax + By + C = 0? Bagaimana cara menentukan gradien garis lurus jika diketahui letak titik koordinatnya? Sobat idschool dapat mencari tahu bagaimana cara menentukan gradien garis lurus dengan cara-cara berikut. Table of ContentsNilai Gradien m Garis Lurus Cara Menentukan Gradien Garis Lurus1 Cara Menentukan Gradien dari Gambar2 Cara Menentukan Gradien dari Persamaan y = mx + c3 Cara Menentukan Gradien dari persamaan ax + by + c = 04 Cara Menentukan Gradien dari Dua Titik yang DiketahuiSifat Gradien Dari Dua GarisHubungan Nilai Gradien dari 2 Garis SejajarHubungan Nilai Gradien dari 2 Garis Saling Tegak LurusContoh Soal dan PembahasanContoh 1 – Contoh Soal Menentukan Gradien Contoh 2 – Gradien Grais Jika Diketahui Melalui 2 Titik Baca Juga Rumus Persamaan Garis Lurus Nilai Gradien m Garis Lurus Nilai gradien dari sebuah garis menyatakan perbandingan nilai satuan sumbu vertikal y per sumbu horizontal x pada bidang koordinat. Besar nilai gradien menunjukkan seberapa miring garis tersebut terhadap garis mendatar. Semakin besar nilai gradien berarti garis akan semakin tegak. Sebuah garis lurus yang sejajar dengan sumbu x memiliki nilai gradien sama dengan nol m = 0. Sedangkan untuk sebuah garis yang sejajar sumbu y memiliki nilai gradien sama dengan tak hingga m = ∞. Pada sebuah garis dengan persamaan y = x memiliki gradien m = 1. Nilai gradien positif menunjukkan bahwa garis condong ke kanan. Untuk garis dengan persamaan y = –x, nilai gradiennya adalah m = –1. Nilai gradien negatif menunjukkan bahwa garis condong ke kiri. Baca Juga Persamaan Garis yang Saling Sejajar Gradien dan suatu garis lurus dapat diketahui dengan empat cara berbeda. Keempat cara yang digunakan bergantung dari informasi atau keterangan yang diketahui. 1 Cara Menentukan Gradien dari Gambar Untuk garis lurus yang diberikan dalam bentuk gambar, pertama amati arah condong garisnya. Apakah garis condong ke kanan atau garis condong ke kiri. Jika garis condong ke kanan maka nilai gradiennya positif + Jika garis condong ke kiri maka nilai gradiennya negatif – Nilai gradien m dihitung dari perbandingan jarak sumbu y Δy dengan jarak sumbu x Δy dari perpotongan garis tegak/mendatar yang melalui garis lurus. Dua gambar di atas menunjukkan bagaimana cara menentukan nilai m gradien garis lurus yang diberikan dalam bentuk gambar. 2 Cara Menentukan Gradien dari Persamaan y = mx + c Persamaan garis yang diketahui dengan persamaan y = mx + c memiliki nilai gradien sama dengan m. Atau nilai gradiennya adalah besar koefisien x bilangan di depan x. Nilai koefisien x dapat bertanda positif atau negatif. Garis dengan gradien positif m > 0, jika digambar akan menghasilkan garis yang condong ke kanan. Garis dengan gradien negatif m < 0, jika digambar akan menghasilkan garis yang condong ke kiri. Sebagai contoh, sebuah garis lurus dinyatakan dalam persamaan y = 2x + 4. Maka gradien garis lurus tersebut adalah m = 2. Untuk garis lurus yang dinyatakan dalam persamaan qy = px + c, rumus gradien yang digunakan adalah koefisien x per koefisien y. Sehingga, gradien garis lurus qy = px + c adalah m = p/q. Gradien garis qy = px + c m = koef. xkoef. yGradien garis qy = px + c m = pq Sebagai contoh Diketahui sebuah garis memiliki persamaan 2y = 3x + 5. Gradien garis lurus tersebut adalah m = 3/5. Baca Juga Cara Mencari Persamaan Garis yang Saling Tegak Lurus 3 Cara Menentukan Gradien dari persamaan ax + by + c = 0 Bentuk persamaan garis juga dapat dinyatakan dalam persamaan Ax + By + C = 0. Nilai gradien garis yang dinyatakan dalam bentuk persamaan umum Ax + By + c = 0 adalah m = –A/B. Sebagai contoh, Sebuah garis lurus diketahui memiliki persamaan 3x + 2y – 6 = 0. Persamaan garis tersebut memiliki nilai A = 3 bilangan di depan x dan B = 2 bilangan di depan y. Jadi, gradien garis 3x + 2y – 6 = 0 adalah m = –A/B = –3/2 = –11/2 . 4 Cara Menentukan Gradien dari Dua Titik yang Diketahui Beberapa soal juga hanya memberikan informasi berupa dua titik yang dilalui garis. Misalkan diketahui garis yang melalui dua titik yaitu Px1, y1 dan Qx2, y2. Nilai gradien dari garis lurus yang melalui kedua titik tersebut dapat diketahui melalui persamaan di bawah. Bagaimana penggunaan rumus di atas untuk mencari nilai gradien dari garis lurus yang diketahui melalui 2 titik terdapat pada contoh 2 di bawah. Sifat Gradien Dari Dua Garis Dua buah garis dapat berkedudukan sebagai saling sejajar atau saling tegak lurus. Hubungan kedua garis tersebut dapat diketahui dari nilai gradiennya. Hubungan Nilai Gradien dari 2 Garis Sejajar Hubungan nilai gradien dari dua garis yang saling sejajar adalah sama. Misalkan diketahui dua buah garis sejajar yaitu garis g dan garis h. Diketahui gradien garis g adalah mg dan gradien garis h adalah mh. Hubungan nilai gradien antara garis g dan garis h adalah mg = mh. Hubungan Nilai Gradien dari 2 Garis Saling Tegak Lurus Hubungan nilai gradien dari dua garis yang saling tegak lurus adalah lawan kebalikan dari gradien garis lainnya. Atau dapat juga dinyatakan dalam persamaan hasil kali gradiennya sama dengan –1. Misalkan diketahui dua buah garis yaitu garis g dan garis h. Di mana garis g tegak lurus dengan garis h. Gradien garis g adalah mg, gradien garis h adalah mh. Hubungan nilai gradien garis g dan garis h adalah mg x mh = –1. Baca Juga Cara Mencari Persamaan Garis Lurus yang Melalui 2 Titik Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Contoh Soal Menentukan Gradien Sebuah tangga bersandar pada dinding tembok seperti pada gambar. Kemiringan tangga terhadap dinding tembok adalah ….A. 4/3B. 5/4C. 4/5 D. 3/4 Pembahasan Rumus gradien garis lurus yang diberikan dalam gambar dicari tahu dengan mengamati kemana arah condong garis serta perbandingan sumbu vertikal y dan sumbu horizontal x. Untuk menentukan kemiringan tangga tersebut, kita perlu mencari tinggi tembok terlebih dahulu. Gunakan teorema Pythagoras untuk mencari tinggi tembok. Tangga condoh ke arah kanan, sehingga nilai gradien akan positif. Dari soal diperoleh bahwa jarak sumbu x horizontal adalah Δx = 6 m. Sementara jarak sumbu y vertikal belum diktahui. Jarak sumbu vertikal sama dengan jarak antara ujung tangga bagian atas sampai ke tanah Δy = tinggi tembok. Cara menghitung tinggi tembok dapat menggunakan rumus pytagoras seperti yang dilakukan pada langkah penyelesaian berikut. Dari hasil perhitungan diperoleh jarak sumbu y vertikal adalah Δy = 8 m. Jadi, kemiringan tangga terhadap dinding tembok adalah m = Δy/Δx = 8/6 = 4/3. Jawaban A Contoh 2 – Gradien Grais Jika Diketahui Melalui 2 Titik Gradien dari sebuah garis yang melalui titik P1, 3 dan Q5, 7 adalah ….A. 2B. 1C. 0D. –1 PembahasanUntuk mendapatkan nilai gradien dari dua titik yang diketahui, sobat idschool dapat menggunakan rumus gradien berikut. Jadi, gradien dari sebuah garis yang melalui titik P1, 3 dan Q5, 7 adalah m = 1. Jawaban B Demikianlah tadi ulasan bagaimana cara menentukan gradien garis lurus beserta contoh penggunaan rumus gradien. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Rumus Jarak Titik ke Garis
besarnyasudut antara dua garis 3, garis yang tegak lurus akan membentuk sudut 90 dua garis yang tidak berpotongan dan tidak terletak pada bidang yang sama definisi 5 2, ak sudut bahan e learning kb 2 4 2 sifat ketegaklurusan misalkan garis g h dan g memotong h diApakah Anda pernah memperhatikan kenapa tangga jalan yang dibangun di daerah pegunungan sangat presisi? Ternyata, dalam proses pembangunannya, ada ilmu matematika yang dilibatkan yaitu gradien. Dikutip dari gradien adalah nilai kemiringan atau kecondongan suatu garis yang membandingkan antara dua komponen yaitu komponen Y ordinat dengan komponen X absisi. Gradien inilah yang akan menentukan tingkat kemiringan yang terjadi pada suatu garis dalam koordinat cartesius. Gradien suatu garis bisa miring ke kanan, ke kiri, curam, maupun landai. Arah dan kemiringan garis ni ini tergantung dari nilai komponen X dan komponen Y nya. Untuk menentukan tingkat kemiringan yang tepat, ada rumus yang diterapkan yaitu rumus gradien. Rumus ini sangat penting agar tangga atau jalan yang dbangun memiliki kemiirngaan yang tepat sehingga tidak mencelakai orang ketika melewati nya. Untuk informasi lebih lengkapnya, simak penjelasan di bawah ini. Sifat-Sifat Gradien dari Dua Garis Lurus Dikutip dari Zenius, ada sifat dua garis lurus yang dapat membantu menentukan gradien dari dua garis. Berikut ini penjelasannya. 1. Dua Garis Sejajar Bila garis A dan B saling sejajar, maka keduanya memiliki nilai gradien yang sama dan dapat dinyatakan dengan mA = mB. 2. Dua Garis Tegak Lurus Jika garis A dan garis B saling tegak lurus, cukup kalikan kedua gradiennya seperti ini mA x mB = -1 Pengertian Gradien Tegak Lurus Seperti yang sudah Anda ketahui sebelumnya, salah satu sifat gradien adalah memiliki dua garis tegak lurus. Bisa dibilang, gradien tegak lurus merupakan garis yang saling berpotongan dan pada titik potongnya membentuk siku-siku sebesar 90°. Apabila dua garis tegak lurus ini dikalikan akan menghasilkan angka -1. Oleh karena itu, rumus yang digunakan adalah y=mx + c Sedangkan rumus gradiennya adalah m1=-1/m2 Contoh Soal Agar Anda lebih paham tentang gradien tegak lurus dan cara menggunakan rumusnya, simak contoh soal yang dikutip dari berbagai sumber ini. Contoh Soal 1 Diketahui sebuah persamaan garis lurus 2x + y – 6 = 0. Tentukanlah gradien garis tegak lurus dari pertanyaan tersebut. Pembahasan a = 2 b = 1 c = -6 m1 = -a/b = -2/1 = -2 Gradien dari garis tegak lurus adalah m1 x m2 = -1 M2 = -1/m1 = -1/-2 =1/2 Sehingga, gradien garis yang tegak lurus dengan garis 2x + y – 8 = 0 sebesar ½. Contoh Soal 2 Berapakah besaran persamaan garis lurus yang melalui titik 2,5 dan tegak lurus garis x – 2y + 4 = 0? Pembahasan Garis 1 melalui titik 2,5 Garis 2 x – 2y + 4 = 0 Hubungan kedua garis tegak lurus berlaku m1 x m2 = -1 ....i Gradien m2 dapat diketahui dari persamaan garis 2 x – 2y + 4 = 0 2y = x + 4 y = ½ x + 2 sehingga diperole m2 = ½ ....ii Subtitusi persamaan ii ke persamaan i sehingga diperoleh m1 x m2 = -1 m1 x 1/2 = - m1 = -2 ....iii sehingga, persamaan garis yang melalui titik 2,5 dengan gradien m1= -2 yakni y – y1 = mx -x1 y – 5 = -3x -2 y – 5 = -2x + 4 y = -2x + 4 + 5 y = -2 + 9 sehingga ekuivalennya adalah 2x + y – 9 = 0. Contoh Soal 3 Suatu garis L tegak lurus dengan garis 3x - y = 4. Berapakah gradien dari garis L tersebut? Berarti dalam soal ada dua buah garis lurus, yang pertama adalah garis L dan yang kedua adalah garis dengan persamaan 3x - y = 4. Pembahasan gradien garis L kita sebut dengan "m₁" gradien garis 3x - y = 4 kita sebut dengan "m₂" Anda harus mencari dulu gradien dari 3x - y = 4 atau disebut dengan "m₂". 3x - y = 4 pindahkan 3x ke ruas kanan sehingga menjadi -3x ini agar y sendiri berada di ruas kiri 3x - y = 4 -y = 4 - 3x bagi semua dengan -1 agar y koefisiennya satu. -y = 4 - 3x -1 -1 -1 y = -4 + 3x Kalau y sudah sendiri dan koefisiennya sudah satu, maka gradien garisnya adalah angka di depan variabel "x" Jadi gradiennya adalah 3 atau m₂ = 3. Kemudian, Anda perlu mencari gradien garis L. Gunakan hubungan m₁ × m₂ = -1 m₁ × m₂ = -1 ingat m₂ = 3 m₁ × 3 = -1 m₁ = -1 3 m₁ = -1/3 Gradien garis L m₁ = -1/3 Contoh Soal 4 Suatu garis H tegak lurus dengan garis 2x - 3y = 5. Berapakah gradien dari garis H tersebut? Pembahasan gradien garis H sebut dengan "m₁" gradien garis 2x - 3y = 5 sebut dengan "m₂" Jika ada dua buah garis yang saling tegak lurus, maka hasil kali kedua gradiennya adalah minus satu -1 dan bisa ditulis m₁ × m₂ = -1 Sifat inilah yang akan digunakan untuk menentukan gradien garis H. Mencari gradien 2x - 3y = 5 Anda harus mencari dulu gradien dari 2x - 3y = 5 atau disebut dengan "m₂". 2x - 3y = 5 Pindahkan 2x ke ruas kanan sehingga menjadi -2x ini agar y sendiri berada di ruas kiri 2x - 3y = 5 -3y = 5 - 2x bagi semua dengan -3 agar y koefisiennya satu. -3y = 5 - 2x -3 -3 -3 y = -5 + 2x 3 3 Kalau y sudah sendiri dan koefisiennya sudah satu, maka gradien garisnya adalah angka di depan variabel "x" Jadi gradiennya adalah 2/3 atau m₂ = 2/3. Nah, m₂ sudah diketahui dan sekarang Anda bisa mencari gradien garis H. Gunakan hubungan m₁ × m₂ = -1 m₁ × m₂ = -1 ingat m₂ = 2/3 m₁ × 2/3 = -1 m₁ = -1 2/3 m₁ = -1 x 3/2 Gradien garis H m₁ = -3/2
RumusGradien Jika Diketahui Dua Titik yang Dilalui Garis. Misal diketahui sebuah garis melalui titik (x 1,y 1) dan (x 2,y 2) dengan kata lain, jika garis g tegak lurus dengan garis h maka gradien garis h lawan dari kebalikan gradien garis g. Lebih sederhana lagi, jika gradien garis g sama dengan j/k maka gradien garis h sama dengan -k/j. Langkah 1Tulis kembali dalam bentuk perpotongan untuk lebih banyak langkah...Langkah perpotongan kemiringan adalah , di mana adalah gradiennya dan adalah perpotongan sumbu semua suku yang tidak mengandung ke sisi kanan dari untuk lebih banyak langkah...Langkah dari kedua sisi persamaan ke kedua sisi setiap suku pada dengan dan untuk lebih banyak langkah...Langkah setiap suku di dengan .Langkah sisi untuk lebih banyak langkah...Langkah faktor persekutuan dari .Ketuk untuk lebih banyak langkah...Langkah faktor sisi untuk lebih banyak langkah...Langkah setiap untuk lebih banyak langkah...Langkah dua nilai negatif menghasilkan nilai tanda negatif di depan- Dua garis lurus yang saling sejajar memiliki nilai gradien yang sama besar. Sedangkan, dua garis lurus yang saling tegak lurus adalah hasil kali gradien dari kedua garis sama dengan sama dengan – dari buku Cara Pintar Menghadapi Ujian Nasional 2009 Matematika 2009 oleh Ruslan Tri Setiawan, garis l dengan gradien m1 dan garis g dengan gradien m2 saling sejajar jika memenuhi Sementara, garis l dengan gradien m1 dan garis g dengan gradien m2 saling tegak lurus memenuhi Baca juga Cara Menggambar Grafik Garis pada Persamaan Garis LurusContoh soal 1 Tentukan persamaan garis yang melalui titik 2,5 dan sejajar dengan garis y = 2x+5 Jawab Garis y = 2x+5 adalah bentuk dari persamaan y = mx+c, di mana m adalah gradien. Jadi garis y = 2x+5 mempunyai gradien m = 2. Dua garis sejajar maka Persamaan garis y-5 = 2x-2y = 2x-4+5y = 2x+1 Baca juga Cara Menentukan Persamaan Garis Singgung Lingkaran Contoh soal 2 Tentukan gradien persamaan garis 2x+4y+6 = 0!0= -2x + 6 2x = 6 x = 3 Koordinatnya : ( 0,6) dan (3,0) 15.Gradien garis yang melalui titik A (0 , -4) dan B (6 , 5) adalah a. 1/6 b. 1/4 c. 2/3 d. 3/2 e. 3 Pembahasan : Koordinat titiknya:A (0 , -4) dan B (6 , 5): x1 =-0 , y1 =-4 , x2 = 6 , y2 = 5 m= Persamaan garis yang yang tegak lurus garis ax+by=c dan melalui titik ( , ) adalah
MatematikaALJABAR Kelas 8 SMPPERSAMAAN GARIS LURUSGradien KemiringanGradien yang tegak lurus dengan garis garis 3x + 5y + 20 = 0 adalah A. -5/3 C. 3/5 B. -3/5 D. 5/3Gradien KemiringanPERSAMAAN GARIS LURUSALJABARMatematikaRekomendasi video solusi lainnya0221Garis k menyinggung grafik fungsi gx=3x^2-z+6 di titi...0130Gradien garis yang melalui titik A2, -3 dan B4, 1 adalah0311Gradien garis singgung sebuah kurva pada setiap titik din...Teks videojika kita diminta untuk menentukan gradien garis yang tegak lurus dengan suatu persamaan garis jika persamaan garisnya adalah a x ditambah b y + c = 0 maka gradien garis ini adalah minus a per B dan hubungan antara dua garis yang saling tegak lurus yaitu m1 * m2 = minus 1 sehingga untuk x + 5 y + 20 sama dengan nol berarti gradien garis di sini adalah minus 3 per 5 maka untuk menentukan gradien garis yang lain maka kita tentukan m1 * m2 = min 1 berarti minus 3 per 5 x gradiennya tersebut gradien garis kedua M2 = minus 1 maka M2 nya minus 1 minus 35 kita pindahkan menjadi minus 5 per 3 min dengan minus menjadi plus berarti M2 nya = 5 per 3 maka pilihan yang sesuai di sini adalah Dek sampai jumpa di pertanyaan berikutnyaHasilkali gradien garis-garis yang saling tegak lurus adalah -1 atau Contoh: Misalnya, garis melalui titik (1,−1) dan titik (3,1). Adapun garis melalui titik (3,1) (6,−2). Apakah garis a dan garis b saling tegak lurus? Penyelesaian: Tentukan dan terlebih dulu agar dapat mengetahui apakah garis a dan garis b saling tegak lurus. 1× 2=−1 Ilustrasi belajar gradien. Foto bublikhaus via FreepikRumus mencari gradien. Foto Nada Shofura/kumparanIlustrasi gradien garis. Foto Nada Shofura/kumparan1. Rumus Mencari Gradien Garis Melalui 2 TitikRumus gradien garis yang melalui titik 0,0 dan x1,y1. Foto Nada Shofura/kumparan2. Rumus Mencari Gradien Garis Melalui 1 Titik x1,y1 dan x2,y2Rumus mencari gradien garis yang melalui titik x1,y1 dan x2,y2. Foto Nada Shofura/kumparan3. Rumus Mencari Gradien Garis Sejajar Sumbu XRumus mencari gradien garis yang sejajar sumbu x. Foto Nada Shofura/kumparanContoh garis yang sejajar dengan sumbu x. Foto Kemdikbud4. Rumus Mencari Gradien Sejajar Sumbu YRumus mencari gradien garis yang sejajar sumbu y. Foto Nada Shofura/kumparan5. Rumus Mencari Gradien untuk Dua Garis yang SejajarRumus mencari gradien dua garis yang saling sejajar. Foto Nada Shofura/kumparan6. Rumus Mencari Gradien untuk Dua Garis yang Tegak LurusRumus mencari gradien dua garis yang saling tegak lurus. Foto Nada Shofura/kumparan7. Rumus Gradien Garis dengan Persamaan Garis LurusRumus mencari gradien dari persamaan garis lurus. Foto Nada Shofura/kumparan Tentukangradien dari persamaan garis \( 4x-3y + 7 = 0 \) Persamaan garis singgung yang akan dicari tegak lurus dengan garis 4x - 3y + 7 = 0. Diketahui syarat garis saling tegak lurus adalah \( m_1 \cdot m_2 = -1 \) maka didapat. Tentukan persamaan garis singgung dengan menggunakan gradien garis \( m_2 \) yang telah diperoleh, yaitu; atau